Weak Lensing with Current and Future Surveys

Melanie Simet
UC Riverside/Jet Propulsion Laboratory,
California Institute of Technology

Outline

- 1. Weak lensing and cosmology basics
- 2. Cluster weak lensing measurements
- 3. Blending
- 4. Looking to the future
- 5. Summary

Outline

1. Weak lensing and cosmology basics

- 2. Cluster weak lensing measurements
- 3. Blending
- 4. Looking to the future
- 5. Summary

Cosmology 101

We can't see most of what makes up the universe

Cosmology 101

Judy Schmidt; NASA/ESA

Weak lensing basics

In the thin-lens (linear) limit, lensing is sensitive to a scaled surface mass density:

$$\kappa(\mathbf{R}) = \frac{\Sigma(\mathbf{R})}{\frac{c^2}{4\pi G} \frac{D_A(z_{\text{source}})}{D_A(z_{\text{lens}}) D_A(z_{\text{lens}}, z_{\text{source}})}}$$

For extended objects, lensing leads to a distortion called a shear, y, which we measure using ellipticities *e*.

$$\langle \gamma_t(R) \rangle = \bar{\kappa}(\langle R) - \langle \kappa(R) \rangle$$

In the thin-lens (linear) limit, lensing is sensitive to a scaled surface mass density:

$$\kappa(\mathbf{R}) = \frac{\Sigma(\mathbf{R})}{\frac{c^2}{4\pi G} \frac{D_A(z_{\text{source}})}{D_A(z_{\text{lens}}) D_A(z_{\text{lens}}, z_{\text{source}})}}{\sum_{\text{cr}} (z_l, z_s)}$$

For extended objects, lensing leads to a distortion called a shear, y, which we measure using ellipticities e.

$$\langle \gamma_t(R) \rangle = \bar{\kappa}(\langle R) - \langle \kappa(R) \rangle$$

Note: by galaxy *shapes* I don't mean galaxy *morphology*.

Note: this is just gravity--from *all* matter sources.

$$\kappa(\mathbf{R}) = \frac{\Sigma(\mathbf{R})}{\frac{c^2}{4\pi G} \frac{D_A(z_{\text{source}})}{D_A(z_{\text{lens}}) D_A(z_{\text{lens}}, z_{\text{source}})}}$$

And other cosmological parameters are encoded in those angular diameter distances, so we're sensitive to those, too!

Weak lensing basics

Lensing signals

Different Navarro, Frenk & White (NFW; 1996) profiles, a typical assumption for the density distribution of dark matter haloes derived from simulations.

Photometric redshifts

With millions of objects, we can't get a spectroscopic redshift for every galaxy. Instead we use photometric redshifts (or photo-zs).

Dan Coe, http://www.stsci.edu/~dcoe/BPZ/intro.html

Photometric redshifts

With millions of objects, we can't get a spectroscopic redshift for every galaxy. Instead we use photometric redshifts (or photo-zs).

Dan Coe, http://www.stsci.edu/~dcoe/BPZ/intro.html

What can you do with weak lensing?

Cosmic shear

Galaxy-galaxy lensing

Brouwer et al. 2016 (KiDS)

Modified gravity

Lensing by voids

Lensing by filaments

Galaxy cluster lensing

X-ray: Markevitch et al.; lensing and optical: Clowe et al.

(Why galaxy cluster lensing?)

Outline

- 1. Weak lensing and cosmology basics
- 2. Cluster weak lensing measurements
- 3. Blending
- 4. Looking to the future
- 5. Summary

Galaxy cluster basics

Data sets

RBC X-ray clusters (subset of the MCXC, Piffaretti et al. 2011):

- 0.04 < z < 0.4
- 166 clusters in shape catalogue area
- Mass proxy is L_x

redMaPPer optical clusters (Rykoff et al 2014, Rozo et al 2015):

- 0.1<z<0.33
- $20 < \lambda < 140$ (for reasons to be explained later)
- 5570 clusters in shape catalogue area

Data sets

Weak lensing data (Reyes et al 2012, Nakajima et al 2012):

- 39 million galaxies in SDSS DR8 (1.2/arcmin²)
- Regaussianization shapes
- Photo-zs from ZEBRA
 - Using a set of empirical templates and extra templates interpolated between pairs of the empirical templates
 - Starburst galaxies had bad fits and are excluded from this data set

Stacking: pros and cons

Pros:

- Can get signal even if each lens is low S/N
- Some pernicious effects average out
- Can statistically correct for, e.g., contamination and centroiding errors

Not much choice for SDSS: we just don't have enough signal-to-noise to avoid stacking.

Cons:

- Loses information
- Harder to compare to outside measurements such as X-ray or SZ
- Can't measure scatter

redMaPPer clusters

Simet et al 2017, arXiv:1603.06953

Modeling redMaPPer clusters

Interpretation of a stack can be difficult: many objects with different characteristics, averaged.

- Solution: generate a model for the signal that mimics the stacking properties of the data.
- Use NFW haloes as the base and add them using the weights we think they have in the real lensing signal.
- Parameterize with global parameters of interest and fit with an MCMC.
- Per-lens model means it's easy to include systematic effects
- When scatter is needed, do a single random realization--we have enough haloes that this converges.

Sources of systematic error

- Problems from the shape and redshift catalog:
 - Shear calibration errors, selection, photo-z bias, deblending size estimated from simulation, measurement & lensing signal comparison
- Problems from physical effects of known size
 - Magnification, obscuration neither important here
 - Cluster miscentering priors from other analyses
- Problems from physical effects of unknown size
 - Projection effects a posteriori correction; ongoing work
 - Intrinsic alignments almost certainly small
 - Baryonic effects future work
 - Non-spherical halos a posteriori correction; ongoing work

Comparison to simulation

Assembly bias?

Outline

- 1. Weak lensing and cosmology basics
- 2. Cluster weak lensing measurements
- 3. Blending
- 4. Looking to the future
- 5. Summary

The problem

In current and upcoming surveys, many galaxies will be blended.

Can we detect previously-undetected galaxy blends using their colors?

Toy-model simulations

- Randomly draw two numbers from a redshift distribution
- Randomly draw two templates for galaxy spectra (Brown et al 2013)
- Randomly draw two magnitudes
- Redshift the spectra to the right template, get the flux in LSST bands (ugrizy)
- Add the fluxes
 - Note: no extinction in following plots (active work)

A quick tour of self-organizing maps

A self-organizing map is a 2D representation of a high-dimensional manifold.

See: Geach 2012, Carrasco Kind and Brunner 2014, Masters et al 2015 & refs

First question: do galaxy blends have unique colors?

First question: do galaxy blends have unique colors?

First question: do galaxy blends have unique colors?

...that was with no photometric noise.

Second question: can we make clean samples?

Depends on fraction of things that are blends, but probably also **no**.

Third question: can we measure the unrecognized blend fraction?

Third question: can we measure the unrecognized blend fraction?

Promising, but noisy...

(As a whole, this predicts 0.323 instead of the expected ½))

Outline

- 1. Weak lensing and cosmology basics
- 2. Cluster weak lensing measurements
- 3. Blending
- 4. Looking to the future
- 5. Summary

Survey comparison

Survey	PSF FWHM (arcsec)	Area (deg²)	Source galaxy density (per sq arcmin)	Number of objects
Sloan Digital Sky Survey	1.2	10000	1.1	4.0x10 ⁶
KiloDegree Survey	0.65	1500	12	6.5x10 ⁷
Hyper SuprimeCam	0.6	1500	23	1.2x10 ⁸
Dark Energy Survey	0.9	5000	10	2.0x10 ⁸
WFIRST	0.13	2200	45	3.6x10 ⁸
Euclid	0.13	15000	30	1.6x10 ⁹
Large Synoptic Survey Telescope	0.7	18000	40	2.6x10 ⁹

Hyper SuprimeCam

On the Subaru telescope

 $1.8 \text{ deg}^2 \text{ FOV}$

Strategic Survey Program taking place over ~5 years

Currently in year 2

Data products to be made public

Analyzed using the LSST pipeline

No weak lensing results to show you yet (so I'll show some photos)

Magnification

Magnification is a change in observed number density:

$$n_{\text{obs}}(\vec{\theta}) = n_0(\vec{\theta})[1 + (2\beta_f + \beta_r - 2)\kappa]$$

$$\beta_f = -\frac{\partial \ln n_{\text{obs}}}{\partial \ln f} \bigg|_{\substack{f = f_{\text{min}} \\ r = r_{\text{min}}}}; \quad \beta_r = -\frac{\partial \ln n_{\text{obs}}}{\partial \ln r} \bigg|_{\substack{f = f_{\text{min}} \\ r = r_{\text{min}}}}$$

Since there are many more small and faint things, deeper surveys & surveys with smaller PSFs will be able to measure this effect more easily.

Flexion

Weak lensing shear is similar to one term in a Taylor expansion of the lensing effect. The next higher term is flexion, or "banananess".

Weak lensing	Flexion		
•			
•	•		
Large-scale structure	Substructure, outskirts of halos		

→ Harder to measure than shear, but with higher-quality data, maybe!

Per-cluster information

Mantz et al. 2016 arXiv:1606.03407

Tomography (lensing as a function of redshift)

Summary

- We can already make good measurements of many kinds of gravitational lenses & of cosmic shear
- Lots of work still to do in software and modeling
- Some scary systematics, but we're working on them
- Lots of exciting possibilities with upcoming surveys!

What's coming up in the future?

- Mass-concentration for redMaPPer
- Cosmology from the existing mass calibrations
- New missions: HSC, DES, LSST, Euclid, WFIRST...
- Tomography: making measurements in different redshift slices
- New probes of lensing: magnification, flexion, ...
- Per-cluster information on many more clusters
- And more!